

Game Theory Intro

Game Theory Course: Jackson, Leyton-Brown & Shoham

Defining Games - Key Ingredients

- Players: who are the decision makers?
 - People? Governments? Companies? Somebody employed by a Company?...

Defining Games - Key Ingredients

- Players: who are the decision makers?
 - People? Governments? Companies? Somebody employed by a Company?...
- Actions: what can the players do?
 - Enter a bid in an auction? Decide whether to end a strike? Decide when to sell a stock? Decide how to vote?

Defining Games - Key Ingredients

- Players: who are the decision makers?
 - People? Governments? Companies? Somebody employed by a Company?...
- Actions: what can the players do?
 - Enter a bid in an auction? Decide whether to end a strike? Decide when to sell a stock? Decide how to vote?
- Payoffs: what motivates players?
 - Do they care about some profit? Do they care about other players?...

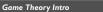
Defining Games - Two Standard Representations

- Normal Form (a.k.a. Matrix Form, Strategic Form) List what payoffs get as a function of their actions
 - It is as if players moved simultaneously
 - But strategies encode many things...

Defining Games - Two Standard Representations

- Normal Form (a.k.a. Matrix Form, Strategic Form) List what payoffs get as a function of their actions
 - It is as if players moved simultaneously
 - But strategies encode many things...
- Extensive Form Includes timing of moves (later in course)
 - Players move sequentially, represented as a tree
 - Chess: white player moves, then black player can see white's move and react...
 - Keeps track of what each player knows when he or she makes each decision
 - Poker: bet sequentially what can a given player see when they bet?

• Finite, *n*-person normal form game: $\langle N, A, u \rangle$:


• Finite, *n*-person normal form game: $\langle N, A, u \rangle$:

• Players: $N = \{1, \dots, n\}$ is a finite set of n, indexed by i

• Finite, *n*-person normal form game: $\langle N, A, u \rangle$:

- Players: $N = \{1, \ldots, n\}$ is a finite set of n , indexed by i
- Action set for player $i A_i$
 - $a = (a_1, \ldots, a_n) \in A = A_1 \times \ldots \times A_n$ is an action profile

• Finite, *n*-person normal form game: $\langle N, A, u \rangle$:

- Players: $N=\{1,\ldots,n\}$ is a finite set of n , indexed by i
- Action set for player $i A_i$
 - $a = (a_1, \ldots, a_n) \in A = A_1 \times \ldots \times A_n$ is an action profile
- Utility function or Payoff function for player i: u_i : A → ℝ
 u = (u₁,..., u_n), is a profile of utility functions

Normal Form Games - The Standard Matrix Representation

- Writing a 2-player game as a matrix:
 - "row" player is player I, "column" player is player 2
 - rows correspond to actions $a_1 \in A_1$, columns correspond to actions $a_2 \in A_2$
 - cells listing utility or payoff values for each player: the row player first, then the column

Games in Matrix Form

Here's the TCP Backoff Game written as a matrix

$$C$$
 D

$$\begin{array}{c|c|c} C & -1, -1 & -4, 0 \\ \hline D & 0, -4 & -3, -3 \end{array}$$

A Large Collective Action Game

• Players: $N = \{1, \dots, 10, 000, 000\}$

A Large Collective Action Game

• Players: $N = \{1, \dots, 10, 000, 000\}$

• Action set for player $i A_i = \{Revolt, Not\}$

A Large Collective Action Game

• Players: $N = \{1, \dots, 10, 000, 000\}$

- Action set for player $i A_i = \{Revolt, Not\}$
- Utility function for player *i*:

•
$$u_i(a) = 1$$
 if $\#\{j : a_j = Revolt\} \ge 2,000,000$

• $u_i(a) = -1$ if $\#\{j : a_j = Revolt\} < 2,000,000$ and $a_i = Revolt$

$$\bullet \ \ u_i(a) = 0 \quad \ \text{if} \ \#\{j: a_j = Revolt\} < 2,000,000 \ \text{and} \ a_i = Not$$

Summary: Defining Games

- For Now: Normal Form (Strategic Form, Matrix Representation...)
 - Players: N
 - Actions: A_i
 - Payoffs: u_i
- Later: Extensive Form
 - Timing: in what order do things happen?
 - Information: what do players know when they act

